

UAV Specifications BLACKLION-168

Size	Diameter: 1,680mm, When collapsed: 700mm, Height: 450mm
Max. Payload	4.0kg
Max. Flight Time	Approx. 20 minutes (When mounted the system)
Flight Range	250m (NIPPON INSIEK standard)
Max. Height	150m (NIPPON INSIEK standard)
Sensor	Laser scanner: Velodyne VLP-16
	High-quality digital camera

LiDAR Sensor Specifications Velodyne VLP-16

Measuring Range/FOV	Horizontally 360° Omnidirectional/Vertical30°	Weight	830g
Measuring Distance	Approx. 100m (1m~100m)	Size	Height 72mm × Diameter 103mm
Measuring Speed	5~20Hz	Measuring Method	TOF (dual return)
Number of point cloud	Approx. 300,000 points/sec (360°)	Laser Class	Class 1 Eye Safe
Accuracy	±3cm		4

INS Sensor Specifications Applanix AP15

Size/Weight	43mm × 47mm × 12mm • 15g
Position Accuracy	Horizontal 5cm Height 10cm (Postprocess only correctable by GCP)
Roll&Pitch	0.025 (deg)
True Heading	0.08 (deg)
Applicable Satelites	220 channels, GPS, GLONASS.BeiDou, Galile, QZSS, SBAS, L-Band

Characteristics of Laser Survey

Acquiring ground data under trees

Obtaining ± 10 cm accuracy without using control point

Take measurements un-influenced by the brightness of sunlight

Minimal photographic blur even during strong winds

Please take notice that effective April 1, 2019, ASCO-DAITO CO., LTD. will be changing its name to NIPPON INSIEK CO., LTD.

Osaka Head Office: Ito Bldg. 3-6-14 Minamihommachi, Chuo-ku, Osaka 541-0054 Japan TEL +81-6-6282-0325 / FAX +81-6-6282-0326 Tokyo Head Office: Sumitomoseimei Nihonbashitomizawacho Bldg. 9-19 Nihonbashitomizawacho, Chuo-ku, Tokyo 103-0006 Japan

TEL +81-3-5641-2181 / FAX +81-3-5641-2187 w insiek co in/en

https://www.insiek.co.jp//en//

NIPPON INSIEK will provide total support for "Air Scanner1", from sale to maintenance.

The 4 services for Air Scanner1

- Sales
- Planning and analysis service
- •Education support
- Maintenance

UAV mounted laser measurement system

Application In a 3D model generated from photographs, it is only possible to create the grass and trees. With laser scanning, it is easier to observe past grass and trees and capture hidden structures on the ground and plants.

Filtering

It can acquire the ground data which could not be acquired with the photographs.

Case

Survey/DTM→ Longitudinal/Cross-sectional view and Caser

It is possible to generate images of tree height, contour maps, longitudinal and cross-section views from the acquired correct DTM.

Using the Inertial Navigation System (GNSS/IMU), post-processing kinematic analysis **ACCURACY** of the trajectory ensures absolute accuracy without the need for control point.

Inertial Navigation System(GNSS/IMU)

Flight test for accuracy verification (Flight height: approx.30m • 60m)

C1 Al=	Al=30m	Al=60m	62	Al=30m	Al=60m	<u> </u>	Al=30m	Al=60m
	ΔZ	ΔZ	C2	ΔZ	ΔZ	63	ΔZ	ΔZ
	0.019	0.026	P1	0.06	0.054	P1	0.029	0.034
	0.02	0.024	P2	0.057	0.055	P2	0.005	0.024
	0.001	0.023	Р3	0.058	0.039	Р3	0.016	0.003
	0.002	0.027	P4	0.036	0.052	P4	0.029	0.007
	0.022	0.031	P5	0.012	0.016	P5	0.037	0.018
	0	0.002	P6	0.013	0.001	P6	0.005	0.032
	0.037	0.024	P7	0.014	0.041	P7	0.032	0.02
	0.014	0.027	P8	0.026	0.035	P8	0.014	0.02
	0.007	0.025	Р9	0.009	0.042	Р9	0.014	0.032
. value	0.013	0.023	Avg. value	0.031	0.037	Avg. value	0.02	0.021
x. value	0.037	0.031	Max. value	0.06	0.055	Max. value	0.037	0.034
ndard riation	0.012	0.008	Standard deviation	0.022	0.018	Standard deviation	0.012	0.011

*This is the result of analysis using GNSS/IMU. Correction Sta using antiaircraft beacons were not done.

3 courses were surveyed at altitudes of 30m and 60m, and the absolute accuracy Z value

was verified at 9 beacons. Max. error: 0.055m Minimum error: 0.000m

Creating a model after construction from the plan drawing

GNSS/IMU		Specifications from manufacturer						
Analysis result		PERFORMANCE SPECIFICATIONS ² (RMS ERROR)						
		Airborne Applications						7
	-	- 1		RTX ⁵	RTX Post-Processed ⁶	SmartBase Post-Pro-		0.1m
		Position (m)	1.5 H	<0.1H	< 0.1 H	<0.05 H		
		Velocity (m/s)	3.0 V	<0.2 V	<0.2 V	<0.1V		
		Roll & Pitch (deg)	0.04	0.03	0.025	0.025		
		True Heading ³ (deg)	0.30	0.18	0.08	0.08		XY
						-	·	0.05m
	h+	-n			X		J	
minth	ha				h	na.	_	

Residuals table for absolute elevation (m)

Soil Amount Calculation

It is possible to grasp the position and range of the embankment/cut earth in advance by superimposing and analyzing the 3D measurement data by the UAV before the construction work and the data created from construction plan drawings.

Caser